کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2829587 1162815 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mollusk shell formation: Mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شناسی مولکولی
پیش نمایش صفحه اول مقاله
Mollusk shell formation: Mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre
چکیده انگلیسی

Control over mineral formation in mollusk shells is exerted by the macromolecules of the organic matrix. Using histochemical methods, we mapped the carboxylates and sulfates of proteins and polysaccharides on the surfaces of decalcified interlamellar matrices from the nacreous shell layer of the cephalopod Nautilus pompilius, expanding upon an earlier study by Crenshaw and Ristedt [Crenshaw, M.A., Ristedt, H., 1976. The histochemical localization of reactive groups in septal nacre from Nautilus pompilius. In: Watabe, N., Wilbur, K.M. (Ed.), The Mechanisms of Mineralization in the Invertebrates and Plants. University of South Carolina Press, Colombia, pp. 355–367]. We observed four different zones underlying a single crystal: (1) a central spot rich in carboxylates; (2) a central ring-shaped area rich in sulfates; (3) an area between the central nucleation region and the imprint periphery containing carboxylates, and (4) the intertabular matrix, rich in carboxylates and sulfates. We also mapped matrix functional groups on the nacreous matrix surfaces of the bivalve Atrina rigida, but did not identify well-defined zones. Immuno-mapping of the constituents of the aragonite-nucleating protein fraction from Atrina nacre showed that these macromolecules are located both in the intertabular matrix and in the center of the crystal imprints for both Atrina and Nautilus matrix surfaces. Their presence at the latter location is consistent with their purported role in aragonite nucleation. The observed differentiation in the distribution of matrix components and their functional groups shows that the different stages of single crystal growth are highly controlled by the matrix.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Structural Biology - Volume 153, Issue 2, February 2006, Pages 176–187
نویسندگان
, , , ,