کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
284430 | 509146 | 2015 | 11 صفحه PDF | دانلود رایگان |
• Experimental moment–axial compression diagram for composite beams
• Rigid plastic analysis predicts the combined ultimate strength of composite beams.
• Finite element models simulated the tests with good agreement.
• Parametric analyses on practical composite sections
• A practical design model is proposed.
This paper presents an experimental and numerical study on the ultimate strength of steel–concrete composite beams subjected to the combined effects of sagging (or positive) bending and axial compression. Six full-scale composite beams were tested experimentally under sagging bending and increasing levels of axial compression. A nonlinear finite element model was also developed and found to be capable of accurately predicting the nonlinear response and the combined strength of the tested composite beams. The numerical model was then used to carry out a series of parametric analyses on a range of composite sections commonly used in practice. It was found that the sagging moment resistance of a composite beam is not reduced under low-to-moderate axial compression, while it significantly deteriorates under high axial compression. Sectional rigid plastic analyses confirmed the experimental results. The moment–axial force interaction does not change significantly between full and partial shear connection. Based on the experimental and numerical results, a sagging moment–axial compression interaction law is proposed which will allow for a more efficient design of composite beams.
Journal: Journal of Constructional Steel Research - Volume 110, July 2015, Pages 29–39