کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
295743 511572 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Defect characterization in infrared non-destructive testing with learning machines
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
Defect characterization in infrared non-destructive testing with learning machines
چکیده انگلیسی

It is well known that thermal contrast-based quantification methods are strongly affected by the non-uniform heating, the sample shape and the chosen sound area. In this work we propose a reference-free thermal contrast by using the thermal quadrupoles theory and evaluate the limits of defect detection in composite samples by using dynamic principal components analysis (DPCA) and k-nearest neighbor algorithm. Additionally, we propose and validate the radial basis functions (RBF) networks and support vector machines (SVM) for the detection and quantification of defect depth in composite material samples affected by non-uniform heating and with complex shapes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NDT & E International - Volume 42, Issue 7, October 2009, Pages 630–643
نویسندگان
, , , , , ,