کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2991318 | 1179865 | 2012 | 8 صفحه PDF | دانلود رایگان |

ObjectiveThe mechanism underlying ischemic preconditioning (IPC) protection against spinal cord ischemia-reperfusion (I/R) injury is unclear. We investigated the role of spinal cord autoregulation in tolerance to spinal cord I/R injury induced by IPC in a rat model.MethodsSprague-Dawley rats were randomly assigned to four groups. IPC (P) group animals received IPC by temporary thoracic aortic occlusion (AO) with a 2F Fogarty arterial embolectomy catheter (Baxter Healthcare, Irvine, Calif) for 3 minutes. The I/R injury (I/R) group animals were treated with blood withdrawal and temporary AO for 12 minutes, and shed blood reinfusion at the end of the procedures. The P+I/R animals received IPC, followed by 5 minutes reperfusion, and then I/R procedures for 12 minutes. Sham (S) group animals received anesthesia and underwent surgical preparation, but without preconditioning or I/R injury. Neurologic function on postprocedure days 1, 3, 5, and 7 was evaluated by Tarlov scoring. Lumbar segments were harvested for histopathologic examination on day 7. To evaluate the role of autoregulation in IPC, spinal cord blood flow and tissue oxygenation were continuously monitored throughout the procedure duration.ResultsThe Tarlov scores in the I/R group were significantly lower than those in the S, P, and P+I/R groups on days 1, 3, 5, and 7 (P < .001). No significant differences were noted between the S, P, and P+I/R groups. The numbers of surviving motor neurons in the S, P, and P+I/R groups were significantly higher than those in the I/R group (P < .001); however, the number of surviving motor neurons did not differ between the S, P, and P+I/R groups. The P group exhibited higher spinal cord blood flow (P = .001-.043) and tissue oxygenation (P = .032-.043) within the first 60 minutes after reperfusion than the S group. The P+I/R group exhibited higher spinal cord blood flow (P = .016-.045) and tissue oxygenation (P = .001-.038) within the first 60 minutes after reperfusion than the I/R group.ConclusionsIPC ameliorates spinal cord I/R injury in rats, probably mediated by triggering spinal cord autoregulation and improving local spinal cord blood flow and tissue oxygenation. This concept may be the new therapeutic targets in patients requiring aortic surgery.
Clinical RelevanceSpinal cord ischemia-reperfusion (I/R) injury is a potentially devastating and unpredictable complication of thoracoabdominal aorta surgery. Several protective strategies have been developed that attempt to preserve blood supply or increase spinal cord ischemic tolerance. This study shows that ischemic preconditioning triggers spinal cord autoregulation, improves local blood flow and tissue oxygenation, and ameliorates I/R injury. This concept may have clinical utility in patients requiring aortic surgery, and triggering and maintenance of spinal cord autoregulation may be new therapeutic targets to eliminate the catastrophic complication.
Journal: Journal of Vascular Surgery - Volume 55, Issue 4, April 2012, Pages 1116–1123