کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
299872 | 512453 | 2016 | 8 صفحه PDF | دانلود رایگان |
• 3-D conjugate heat transfer modeling was conducted inside capillary panel.
• Numerical results agree closely with ASHRAE values.
• TNC was proposed to depict panel surface temperature non-uniformity.
• TNC and Cooling capacity linearly correlated with water temperature and tube spacing.
Capillary ceiling radiant cooling panel is a high temperature cooling system, which could pose low energy consumption to meet thermal comfort requirements. A computational fluid dynamics (CFD) simulation study on heat transfer of chilled water flow in the capillary of ceiling radiant cooling panel was performed to attain surface temperature distributions and cooling capacities. Six influencing factors included chilled water inlet parameters, conditions of gypsum plaster and capillary mats structural parameters were considered to obtain the complicated relationships between capillary radiant panel conditions and heat transfer performance. The index of temperature non-uniformity coefficient was proposed to evaluate temperature profiles of ceiling panel surface. The results of the simulation were compared with the values depicted in ASHRAE Handbook and good agreement had been achieved. The average difference between simulation results and the values reported by ASHRAE handbook was within the region of 15%. The research results showed that temperature non-uniformity coefficient was negatively correlated with temperature of chilled inlet water (linear correlation), water velocity (correlation coefficient R = −0.85), and pipe diameter (correlation coefficient R = −0.93), but positively and linearly correlated with tube spacing. Cooling capacity was found to have negative linear correlation with temperature of chilled inlet water, covering thickness and tube spacing.
Journal: Renewable Energy - Volume 87, Part 3, March 2016, Pages 1154–1161