کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
300117 | 512470 | 2014 | 6 صفحه PDF | دانلود رایگان |

• Higher activity of acetyl esterase was produced by a bacterial strain RB3.
• The strain was isolated from beef cattle rumen fluid and identified as Escherichia coli.
• Production and biochemical characterization of the enzyme were studied.
• Biodegradation of crop residues by the strain RB3 and Pleurotus ostreatus was compared.
Acetyl esterase was produced by a bacterial strain RB3 at a level of 0.59 U mL−1. The strain was isolated from beef cattle rumen fluid under anaerobic condition, and was identified as Escherichia coli. The peak activity of the enzyme appeared after 48 h of culturing under anaerobic condition. The optimal pH of the enzyme activity was 8.0, and the optimal temperature was 40 °C. The Km and Vmax values on p-nitrophenyl acetate were 0.84 mM and 0.13 mmol p-nitrophenol liberated min−1 mg of protein−1 respectively. The enzyme activity could be promoted by Zn2+, Ni2+, Fe2+, and K+, and inhibited by Cu2+, Fe3+, Mn2+, Mg2+, Ca2+, and Co2+. Biodegradation of rice stalk and maize stover by the strain RB3 and Pleurotus ostreatus was compared. The strain showed higher degradation rate for hemicellulose in the crop residues, while P. ostreatus showed higher degradation rate for cellulose. This indicated the potential industrial application of the strain RB3, particularly in utilizing renewable lignocellulose containing acetyl xylan for fermentation of products.
Journal: Renewable Energy - Volume 68, August 2014, Pages 134–139