کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
302805 | 512553 | 2008 | 7 صفحه PDF | دانلود رایگان |

The SrFeCo0.5Oy system combines high electronic/ionic conductivity with appreciable oxygen permeability at elevated temperatures. This system has potential use in high-temperature electrochemical applications such as solid oxide fuel cells, batteries, sensors, and oxygen separation membranes. Dense ceramic membranes of SrFeCo0.5Oy are prepared by pressing a ceramic powder prepared by using a sol–gel combustion technique. Oxygen and hydrogen permeation at high temperature on this material are studied. Measurements are conducted using a time-dependent permeation method at the temperature in the range of 1073–1273 K with oxygen- and hydrogen-driving pressures in the range (3×102)–(1×105) Pa (300–1000 mbar). The maximum oxygen-permeated flux at 1273 K is 6.5×10−3 mol m−2 s−1. The activation energies for the O2-permeation fluxes and diffusivities are 240 and 194 kJ/mol, respectively. Due to the high fragility, the high temperature for the measurements and the high oxygen permeation through such material, a special membrane holder, and compression sealing system have been designed and realized for the permeation apparatus.
Journal: Renewable Energy - Volume 33, Issue 2, February 2008, Pages 241–247