کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3038746 | 1184668 | 2015 | 15 صفحه PDF | دانلود رایگان |
• Intraoperatively recorded evoked potentials (ECAPs) and tremor during thalamic DBS
• Specific ECAP signal characteristics varied systemically with stimulation parameters.
• Trends were observed between the energy of ECAP phases and tremor magnitude.
• Modeling revealed that variable stimulus artifact was caused by glial encapsulation.
• ECAPs may provide a feedback control signal for adjustment of stimulation parameters.
BackgroundDeep brain stimulation (DBS) treats the symptoms of several movement disorders, but optimal selection of stimulation parameters remains a challenge. The evoked compound action potential (ECAP) reflects synchronized neural activation near the DBS lead, and may be useful for feedback control and automatic adjustment of stimulation parameters in closed-loop DBS systems.ObjectivesDetermine the feasibility of recording ECAPs in the clinical setting, understand the neural origin of the ECAP and sources of any stimulus artifact, and correlate ECAP characteristics with motor symptoms.MethodsThe ECAP and tremor response were measured simultaneously during intraoperative studies of thalamic DBS, conducted in patients who were either undergoing surgery for initial lead implantation or replacement of their internal pulse generator.ResultsThere was large subject-to-subject variation in stimulus artifact amplitude, which model-based analysis suggested may have been caused by glial encapsulation of the lead, resulting in imbalances in the tissue impedance between the contacts. ECAP recordings obtained from both acute and chronically implanted electrodes revealed that specific phase characteristics of the signal varied systematically with stimulation parameters. Further, a trend was observed in some patients between the energy of the initial negative and positive ECAP phases, as well as secondary phases, and changes in tremor from baseline. A computational model of thalamic DBS indicated that direct cerebellothalamic fiber activation dominated the clinically measured ECAP, suggesting that excitation of these fibers is critical in DBS therapy.ConclusionsThis work demonstrated that ECAPs can be recorded in the clinical setting and may provide a surrogate feedback control signal for automatic adjustment of stimulation parameters to reduce tremor amplitude.
Journal: Brain Stimulation - Volume 8, Issue 1, January–February 2015, Pages 42–56