کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3053207 | 1579948 | 2007 | 10 صفحه PDF | دانلود رایگان |

SummarySerotonin (5-HT) has been shown to exert antiepileptic effects in a variety of generalized convulsive seizure models, particularly the genetically epilepsy-prone rat (GEPR). The present study was designed to identify the region/site(s) where 5-HT exerts anticonvulsant effects in the GEPR-9, a model in which sound-evoked generalized tonic–clonic seizures (GTCS) are highly sensitive to manipulations in 5-HT concentration. Because the 5-HT reuptake inhibitor, fluoxetine, was known to exert anticonvulsant effects in GEPR-9s via a 5-HT-dependent mechanism, we utilized selective regional 5-HT depletion in combination with systemic fluoxetine administration to find the site where a 5-HT deficit would prevent the anticonvulsant action of fluoxetine. Widespread destruction of serotonergic terminal fields or regionally specific terminal field destruction was achieved using intracerebroventricular and more target specific infusions of 5,7-dihydroxytryptamine. The capacity of fluoxetine to suppress seizures in GEPR-9s following a loss of 5-HT was then examined. The present findings show the anticonvulsant action of fluoxetine is markedly attenuated following the loss of midbrain 5-HT, particularly in the region of the superior colliculus, while forebrain and spinal cord 5-HT do not appear to play a role in the action of fluoxetine. The importance of the deep layers of the SC was confirmed by demonstrating that direct microinfusion of fluoxetine into the SC can suppress seizures in rats pretreated with the 5-HT1A receptor antagonist pindolol.
Journal: Epilepsy Research - Volume 76, Issues 2–3, September 2007, Pages 93–102