کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3075365 | 1580963 | 2014 | 10 صفحه PDF | دانلود رایگان |
• Lacunes are a predictor of cognitive impairment in cerebral small vessel disease
• Lacunes in the anteromedial thalamus are associated with impaired processing speed
• This region was identified to have connectivity to the prefrontal cortex
• We validate this finding with the help of a structural covariance analysis
ObjectivesLacunes are an important disease feature of cerebral small vessel disease (SVD) but their relationship to cognitive impairment is not fully understood. To investigate this we determined (1) the relationship between lacune count and total lacune volume with cognition, (2) the spatial distribution of lacunes and the cognitive impact of lacune location, and (3) the whole brain anatomical covariance associated with these strategically located regions of lacune damage.MethodsOne hundred and twenty one patients with symptomatic lacunar stroke and radiological leukoaraiosis were recruited and multimodal MRI and neuropsychological data acquired. Lacunes were mapped semi-automatically and their volume calculated. Lacune location was automatically determined by projection onto atlases, including an atlas which segments the thalamus based on its connectivity to the cortex. Lacune locations were correlated with neuropsychological results. Voxel based morphometry was used to create anatomical covariance maps for these ‘strategic’ regions.ResultsLacune number and lacune volume were positively associated with worse executive function (number p < 0.001; volume p < 0.001) and processing speed (number p < 0.001; volume p < 0.001). Thalamic lacunes, particularly those in regions with connectivity to the prefrontal cortex, were associated with impaired processing speed (Bonferroni corrected p = 0.016). Regions of associated anatomical covariance included the medial prefrontal, orbitofrontal, anterior insular cortex and the striatum.ConclusionLacunes are important predictors of cognitive impairment in SVD. We highlight the importance of spatial distribution, particularly of anteromedial thalamic lacunes which are associated with impaired information processing speed and may mediate cognitive impairment via disruption of connectivity to the prefrontal cortex.
Journal: NeuroImage: Clinical - Volume 4, 2014, Pages 828–837