کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
308860 | 513570 | 2014 | 9 صفحه PDF | دانلود رایگان |

• SS exhibits remarkable nonlinearity, cyclic hardening and excellent cyclic behavior.
• Welding and rolling directions have direct influences on stress–strain relationship.
• Parameters of the hardening model of cyclic plasticity were calibrated and verified.
• Obtained parameters of cyclic hardening can be used in the engineering practice.
In order to study the constitutive relation of Chinese-made austenitic stainless steel S31608 (EN 1.4401, AISI 316) under monotonic and cyclic loading, different types of coupons were tested. Based on the Ramberg–Osgood model, modified by Gardner and Nethercot, parameters that described stress–strain relationship under monotonic loading were obtained. Comparison between data obtained using different types of coupons was made and the influences of welding and rolling directions were reviewed. Parameters of the hardening model of cyclic plasticity were calibrated from cyclic test data and the tests were simulated using ABAQUS finite element analysis software. The results show that stainless steel exhibits remarkable nonlinearity, and the stress–strain relationship may vary from different rolling directions. Under cyclic loading, with the increase of cyclic loops and change in strain amplitudes, stainless steel exhibits cyclic hardening behavior, and the simulated curves agree fairly well with the test curves. It is therefore recommended that the influences of welding and rolling directions on the stress–strain relationship should be taken into consideration and the constitutive relation under cyclic loading should be used if the component is subjected to cyclic loads.
Journal: Thin-Walled Structures - Volume 83, October 2014, Pages 19–27