کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
312840 534286 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Discharge estimation based on machine learning
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
Discharge estimation based on machine learning
چکیده انگلیسی

To overcome the limitations of the traditional stage-discharge models in describing the dynamic characteristics of a river, a machine learning method of non-parametric regression, the locally weighted regression method was used to estimate discharge. With the purpose of improving the precision and efficiency of river discharge estimation, a novel machine learning method is proposed: the clustering-tree weighted regression method. First, the training instances are clustered. Second, the k-nearest neighbor method is used to cluster new stage samples into the best-fit cluster. Finally, the daily discharge is estimated. In the estimation process, the interference of irrelevant information can be avoided, so that the precision and efficiency of daily discharge estimation are improved. Observed data from the Luding Hydrological Station were used for testing. The simulation results demonstrate that the precision of this method is high. This provides a new effective method for discharge estimation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Science and Engineering - Volume 6, Issue 2, April 2013, Pages 145-152