کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
326778 542546 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximate Bayesian computation with differential evolution
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Approximate Bayesian computation with differential evolution
چکیده انگلیسی

Approximate Bayesian computation (ABC) is a simulation-based method for estimating the posterior distribution of the parameters of a model. The ABC approach is instrumental when a likelihood function for a model cannot be mathematically specified, or has a complicated form. Although difficulty in calculating a model’s likelihood is extremely common, current ABC methods suffer from two problems that have largely prevented their mainstream adoption: long computation time and an inability to scale beyond a few parameters. We introduce differential evolution as a computationally efficient genetic algorithm for proposal generation in our ABC sampler. We show how using this method allows our new ABC algorithm, called ABCDE, to obtain accurate posterior estimates in fewer iterations than kernel-based ABC algorithms and to scale to high-dimensional parameter spaces that have proven difficult for current ABC methods.


► Traditional ABC methods are slow and scale poorly.
► We merge ABC with differential evolution (DE) to provide efficient proposals.
► ABCDE is a fast and scalable method of likelihood-free Bayesian estimation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Psychology - Volume 56, Issue 5, October 2012, Pages 375–385
نویسندگان
, ,