کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
376813 658318 2015 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transferring knowledge as heuristics in reinforcement learning: A case-based approach
ترجمه فارسی عنوان
انتقال دانش به عنوان اکتشافی در یادگیری تقویت: یک رویکرد مبتنی بر مورد
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The goal of this paper is to propose and analyse a transfer learning meta-algorithm that allows the implementation of distinct methods using heuristics to accelerate a Reinforcement Learning procedure in one domain (the target) that are obtained from another (simpler) domain (the source domain). This meta-algorithm works in three stages: first, it uses a Reinforcement Learning step to learn a task on the source domain, storing the knowledge thus obtained in a case base; second, it does an unsupervised mapping of the source-domain actions to the target-domain actions; and, third, the case base obtained in the first stage is used as heuristics to speed up the learning process in the target domain.A set of empirical evaluations were conducted in two target domains: the 3D mountain car (using a learned case base from a 2D simulation) and stability learning for a humanoid robot in the Robocup 3D Soccer Simulator (that uses knowledge learned from the Acrobot domain). The results attest that our transfer learning algorithm outperforms recent heuristically-accelerated reinforcement learning and transfer learning algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 226, September 2015, Pages 102–121
نویسندگان
, , , , ,