کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
376830 658321 2015 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
POMDPs under probabilistic semantics
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
POMDPs under probabilistic semantics
چکیده انگلیسی

We consider partially observable Markov decision processes (POMDPs) with limit-average payoff, where a reward value in the interval [0,1][0,1] is associated with every transition, and the payoff of an infinite path is the long-run average of the rewards. We consider two types of path constraints: (i) a quantitative constraint defines the set of paths where the payoff is at least a given threshold λ1∈(0,1]λ1∈(0,1]; and (ii) a qualitative constraint which is a special case of the quantitative constraint with λ1=1λ1=1. We consider the computation of the almost-sure winning set, where the controller needs to ensure that the path constraint is satisfied with probability 1. Our main results for qualitative path constraints are as follows: (i) the problem of deciding the existence of a finite-memory controller is EXPTIME-complete; and (ii) the problem of deciding the existence of an infinite-memory controller is undecidable. For quantitative path constraints we show that the problem of deciding the existence of a finite-memory controller is undecidable. We also present a prototype implementation of our EXPTIME algorithm and experimental results on several examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 221, April 2015, Pages 46–72
نویسندگان
, ,