کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
376932 658342 2013 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Type Extension Trees for feature construction and learning in relational domains
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Type Extension Trees for feature construction and learning in relational domains
چکیده انگلیسی

Type Extension Trees are a powerful representation language for “count-of-count” features characterizing the combinatorial structure of neighborhoods of entities in relational domains. In this paper we present a learning algorithm for Type Extension Trees (TET) that discovers informative count-of-count features in the supervised learning setting. Experiments on bibliographic data show that TET-learning is able to discover the count-of-count feature underlying the definition of the h-index, and the inverse document frequency feature commonly used in information retrieval. We also introduce a metric on TET feature values. This metric is defined as a recursive application of the Wasserstein–Kantorovich metric. Experiments with a k-NN classifier show that exploiting the recursive count-of-count statistics encoded in TET values improves classification accuracy over alternative methods based on simple count statistics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 204, November 2013, Pages 30–55
نویسندگان
, , , ,