کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
377001 658351 2013 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Causal identifiability via Chain Event Graphs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Causal identifiability via Chain Event Graphs
چکیده انگلیسی

We present the Chain Event Graph (CEG) as a complementary graphical model to the Causal Bayesian Network for the representation and analysis of causally manipulated asymmetric problems. Our focus is on causal identifiability — finding conditions for when the effects of a manipulation can be estimated from a subset of events observable in the unmanipulated system. CEG analogues of Pearlʼs Back Door and Front Door theorems are presented, applicable to the class of singular manipulations, which includes both Pearlʼs basic Do intervention and the class of functional manipulations possible on Bayesian Networks. These theorems are shown to be more flexible than their Bayesian Network counterparts, both in the types of manipulation to which they can be applied, and in the nature of the conditioning sets which can be used.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 195, February 2013, Pages 291-315