کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
377184 658377 2010 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Diagnosing multiple intermittent failures using maximum likelihood estimation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Diagnosing multiple intermittent failures using maximum likelihood estimation
چکیده انگلیسی

In fault diagnosis intermittent failure models are an important tool to adequately deal with realistic failure behavior. Current model-based diagnosis approaches account for the fact that a component cj may fail intermittently by introducing a parameter gj that expresses the probability the component exhibits correct behavior. This component parameter gj, in conjunction with a priori fault probability, is used in a Bayesian framework to compute the posterior fault candidate probabilities. Usually, information on gj is not known a priori. While proper estimation of gj can be critical to diagnostic accuracy, at present, only approximations have been proposed. We present a novel framework, coined Barinel, that computes estimations of the gj as integral part of the posterior candidate probability computation using a maximum likelihood estimation approach. Barinel's diagnostic performance is evaluated for both synthetic systems, the Siemens software diagnosis benchmark, as well as for real-world programs. Our results show that our approach is superior to reasoning approaches based on classical persistent failure models, as well as previously proposed intermittent failure models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 174, Issue 18, December 2010, Pages 1481-1497