کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
377195 658378 2010 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Causal analysis with Chain Event Graphs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Causal analysis with Chain Event Graphs
چکیده انگلیسی

As the Chain Event Graph (CEG) has a topology which represents sets of conditional independence statements, it becomes especially useful when problems lie naturally in a discrete asymmetric non-product space domain, or when much context-specific information is present. In this paper we show that it can also be a powerful representational tool for a wide variety of causal hypotheses in such domains. Furthermore, we demonstrate that, as with Causal Bayesian Networks (CBNs), the identifiability of the effects of causal manipulations when observations of the system are incomplete can be verified simply by reference to the topology of the CEG. We close the paper with a proof of a Back Door Theorem for CEGs, analogous to Pearl's Back Door Theorem for CBNs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 174, Issues 12–13, August 2010, Pages 889-909