کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
377264 658390 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Probabilistic models for melodic prediction
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Probabilistic models for melodic prediction
چکیده انگلیسی

Chord progressions are the building blocks from which tonal music is constructed. The choice of a particular representation for chords has a strong impact on statistical modeling of the dependence between chord symbols and the actual sequences of notes in polyphonic music. Melodic prediction is used in this paper as a benchmark task to evaluate the quality of four chord representations using two probabilistic model architectures derived from Input/Output Hidden Markov Models (IOHMMs). Likelihoods and conditional and unconditional prediction error rates are used as complementary measures of the quality of each of the proposed chord representations. We observe empirically that different chord representations are optimal depending on the chosen evaluation metric. Also, representing chords only by their roots appears to be a good compromise in most of the reported experiments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 173, Issue 14, September 2009, Pages 1266-1274