کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
377294 658397 2009 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
AND/OR Branch-and-Bound search for combinatorial optimization in graphical models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
AND/OR Branch-and-Bound search for combinatorial optimization in graphical models
چکیده انگلیسی

This is the first of two papers presenting and evaluating the power of a new framework for combinatorial optimization in graphical models, based on AND/OR search spaces. We introduce a new generation of depth-first Branch-and-Bound algorithms that explore the AND/OR search tree using static and dynamic variable orderings. The virtue of the AND/OR representation of the search space is that its size may be far smaller than that of a traditional OR representation, which can translate into significant time savings for search algorithms. The focus of this paper is on linear space search which explores the AND/OR search tree. In the second paper we explore memory intensive AND/OR search algorithms. In conjunction with the AND/OR search space we investigate the power of the mini-bucket heuristics in both static and dynamic setups. We focus on two most common optimization problems in graphical models: finding the Most Probable Explanation in Bayesian networks and solving Weighted CSPs. In extensive empirical evaluations we demonstrate that the new AND/OR Branch-and-Bound approach improves considerably over the traditional OR search strategy and show how various variable ordering schemes impact the performance of the AND/OR search scheme.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 173, Issues 16–17, November 2009, Pages 1457-1491