کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
377295 658397 2009 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Memory intensive AND/OR search for combinatorial optimization in graphical models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Memory intensive AND/OR search for combinatorial optimization in graphical models
چکیده انگلیسی

In this paper we explore the impact of caching during search in the context of the recent framework of AND/OR search in graphical models. Specifically, we extend the depth-first AND/OR Branch-and-Bound tree search algorithm to explore an AND/OR search graph by equipping it with an adaptive caching scheme similar to good and no-good recording. Furthermore, we present best-first search algorithms for traversing the same underlying AND/OR search graph and compare both algorithms empirically. We focus on two common optimization problems in graphical models: finding the Most Probable Explanation (MPE) in belief networks and solving Weighted CSPs (WCSP). In an extensive empirical evaluation we demonstrate conclusively the superiority of the memory intensive AND/OR search algorithms on a variety of benchmarks.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 173, Issues 16–17, November 2009, Pages 1492-1524