کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
377298 | 658398 | 2007 | 34 صفحه PDF | دانلود رایگان |

The paper introduces an AND/OR search space perspective for graphical models that include probabilistic networks (directed or undirected) and constraint networks. In contrast to the traditional (OR) search space view, the AND/OR search tree displays some of the independencies present in the graphical model explicitly and may sometimes reduce the search space exponentially. Indeed, most algorithmic advances in search-based constraint processing and probabilistic inference can be viewed as searching an AND/OR search tree or graph. Familiar parameters such as the depth of a spanning tree, treewidth and pathwidth are shown to play a key role in characterizing the effect of AND/OR search graphs vs. the traditional OR search graphs. We compare memory intensive AND/OR graph search with inference methods, and place various existing algorithms within the AND/OR search space.
Journal: Artificial Intelligence - Volume 171, Issues 2–3, February 2007, Pages 73-106