کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
377318 658400 2009 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The factored policy-gradient planner
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
The factored policy-gradient planner
چکیده انگلیسی

We present an any-time concurrent probabilistic temporal planner (CPTP) that includes continuous and discrete uncertainties and metric functions. Rather than relying on dynamic programming our approach builds on methods from stochastic local policy search. That is, we optimise a parameterised policy using gradient ascent. The flexibility of this policy-gradient approach, combined with its low memory use, the use of function approximation methods and factorisation of the policy, allow us to tackle complex domains. This factored policy gradient (FPG) planner can optimise steps to goal, the probability of success, or attempt a combination of both. We compare the FPG planner to other planners on CPTP domains, and on simpler but better studied non-concurrent non-temporal probabilistic planning (PP) domains. We present FPG-ipc, the PP version of the planner which has been successful in the probabilistic track of the fifth international planning competition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 173, Issues 5–6, April 2009, Pages 722-747