کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
377465 658429 2007 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning and inferring transportation routines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Learning and inferring transportation routines
چکیده انگلیسی

This paper introduces a hierarchical Markov model that can learn and infer a user's daily movements through an urban community. The model uses multiple levels of abstraction in order to bridge the gap between raw GPS sensor measurements and high level information such as a user's destination and mode of transportation. To achieve efficient inference, we apply Rao–Blackwellized particle filters at multiple levels of the model hierarchy. Locations such as bus stops and parking lots, where the user frequently changes mode of transportation, are learned from GPS data logs without manual labeling of training data. We experimentally demonstrate how to accurately detect novel behavior or user errors (e.g. taking a wrong bus) by explicitly modeling activities in the context of the user's historical data. Finally, we discuss an application called “Opportunity Knocks” that employs our techniques to help cognitively-impaired people use public transportation safely.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 171, Issues 5–6, April 2007, Pages 311-331