کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
377670 658811 2015 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recognizing lexical and semantic change patterns in evolving life science ontologies to inform mapping adaptation
ترجمه فارسی عنوان
شناخت الگوهای تغییرات واژنی و معنایی در تکامل هستی شناسی علوم زیستی برای اطلاع رسانی سازگاری نقشه ها
کلمات کلیدی
هستی شناسی بیومدیکال، تکامل هستی شناسی، نسخه های هستی شناسی، تغییرات هستی شناسی، نقشه برداری تکامل، سازگاری نقشه ها، تعمیرات نقشه برداری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Algorithms identifying lexical and semantic change patterns in ontology evolution.
• The relevance of the change patterns to support mapping adaptation.
• The influence of the similarity calculated on the performance of the algorithms.

BackgroundMappings established between life science ontologies require significant efforts to maintain them up to date due to the size and frequent evolution of these ontologies. In consequence, automatic methods for applying modifications on mappings are highly demanded. The accuracy of such methods relies on the available description about the evolution of ontologies, especially regarding concepts involved in mappings. However, from one ontology version to another, a further understanding of ontology changes relevant for supporting mapping adaptation is typically lacking.MethodsThis research work defines a set of change patterns at the level of concept attributes, and proposes original methods to automatically recognize instances of these patterns based on the similarity between attributes denoting the evolving concepts. This investigation evaluates the benefits of the proposed methods and the influence of the recognized change patterns to select the strategies for mapping adaptation.ResultsThe summary of the findings is as follows: (1) the Precision (>60%) and Recall (>35%) achieved by comparing manually identified change patterns with the automatic ones; (2) a set of potential impact of recognized change patterns on the way mappings is adapted. We found that the detected correlations cover ∼66% of the mapping adaptation actions with a positive impact; and (3) the influence of the similarity coefficient calculated between concept attributes on the performance of the recognition algorithms.ConclusionsThe experimental evaluations conducted with real life science ontologies showed the effectiveness of our approach to accurately characterize ontology evolution at the level of concept attributes. This investigation confirmed the relevance of the proposed change patterns to support decisions on mapping adaptation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence in Medicine - Volume 63, Issue 3, March 2015, Pages 153–170
نویسندگان
, , , , ,