کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
377821 658833 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fusing visual and clinical information for lung tissue classification in high-resolution computed tomography
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Fusing visual and clinical information for lung tissue classification in high-resolution computed tomography
چکیده انگلیسی

ObjectiveWe investigate the influence of the clinical context of high-resolution computed tomography (HRCT) images of the chest on tissue classification.Methods and materials2D regions of interest in HRCT axial slices from patients affected with an interstitial lung disease are automatically classified into five classes of lung tissue. Relevance of the clinical parameters is studied before fusing them with visual attributes. Two multimedia fusion techniques are compared: early versus late fusion. Early fusion concatenates features in one single vector, yielding a true multimedia feature space. Late fusion consisting of the combination of the probability outputs of two support vector machines.Results and conclusionThe late fusion scheme allowed a maximum of 84% correct predictions of testing instances among the five classes of lung tissue. This represents a significant improvement of 10% compared to a pure visual-based classification. Moreover, the late fusion scheme showed high robustness to the number of clinical parameters used, which suggests that it is appropriate for mining clinical attributes with missing values in clinical routine.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence in Medicine - Volume 50, Issue 1, September 2010, Pages 13–21
نویسندگان
, , , , , , ,