کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
378204 | 658903 | 2006 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Textural features extracted at larger scales and sampling box sizes proved to be more content-rich than their equivalents at smaller scales and sizes. Fractal analysis on the dimensionality of the textural datasets verified that reduced subsets of optimal feature combinations can describe the original feature space adequately for classification purposes and at least the same detail and quality as the list of qualitative texture descriptions provided by a human expert. Non-linear classifiers, especially SVMs, have been proven superior to any linear equivalent. Breast mass classification of mammograms, based only on textural features, achieved an optimal score of 83.9%, through SVM classifiers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence in Medicine - Volume 37, Issue 2, June 2006, Pages 145-162
Journal: Artificial Intelligence in Medicine - Volume 37, Issue 2, June 2006, Pages 145-162
نویسندگان
Michael E. Mavroforakis, Harris V. Georgiou, Nikos Dimitropoulos, Dionisis Cavouras, Sergios Theodoridis,