کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
378204 658903 2006 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
چکیده انگلیسی
Textural features extracted at larger scales and sampling box sizes proved to be more content-rich than their equivalents at smaller scales and sizes. Fractal analysis on the dimensionality of the textural datasets verified that reduced subsets of optimal feature combinations can describe the original feature space adequately for classification purposes and at least the same detail and quality as the list of qualitative texture descriptions provided by a human expert. Non-linear classifiers, especially SVMs, have been proven superior to any linear equivalent. Breast mass classification of mammograms, based only on textural features, achieved an optimal score of 83.9%, through SVM classifiers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence in Medicine - Volume 37, Issue 2, June 2006, Pages 145-162
نویسندگان
, , , , ,