کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
379100 | 659263 | 2009 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Frequent items in streaming data: An experimental evaluation of the state-of-the-art
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The problem of detecting frequent items in streaming data is relevant to many different applications across many domains. Several algorithms, diverse in nature, have been proposed in the literature for the solution of the above problem. In this paper, we review these algorithms, and we present the results of the first extensive comparative experimental study of the most prominent algorithms in the literature. The algorithms were comprehensively tested using a common test framework on several real and synthetic datasets. Their performance with respect to the different parameters (i.e., parameters intrinsic to the algorithms, and data related parameters) was studied. We report the results, and insights gained through these experiments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Data & Knowledge Engineering - Volume 68, Issue 4, April 2009, Pages 415–430
Journal: Data & Knowledge Engineering - Volume 68, Issue 4, April 2009, Pages 415–430
نویسندگان
Nishad Manerikar, Themis Palpanas,