کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380200 1437426 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A space–time delay neural network model for travel time prediction
ترجمه فارسی عنوان
یک مدل شبکه عصبی فضایی برای پیش بینی زمان سفر
کلمات کلیدی
شبکه عصبی تاخیر فضا-زمان، همبستگی فضای زمان، شبکه ترافیکی جاده لندن، پیش بینی زمان سفر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Research on space–time modelling and forecasting has focused on integrating space–time autocorrelation into statistical models to increase the accuracy of forecasting. These models include space–time autoregressive integrated moving average (STARIMA) and its various extensions. However, they are inadequate for the cases when the correlation between data is dynamic and heterogeneous, such as traffic network data. The aim of the paper is to integrate spatial and temporal autocorrelations of road traffic network by developing a novel space–time delay neural network (STDNN) model that capture the autocorrelation locally and dynamically. Validation of the space–time delay neural network is carried out using real data from London road traffic network with 22 links by comparing benchmark models such as Naïve, ARIMA, and STARIMA models. Study results show that STDNN outperforms the Naïve, ARIMA, and STARIMA models in prediction accuracy and has considerable advantages in travel time prediction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 52, June 2016, Pages 145–160
نویسندگان
, , ,