کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380201 1437426 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Label consistent semi-supervised non-negative matrix factorization for maintenance activities identification
ترجمه فارسی عنوان
تقسیم بندی ماتریس نامنفی نیمه نظارت شده مطابق برچسب برای شناسایی فعالیت های تعمیر و نگهداری
کلمات کلیدی
تقسیم بندی ماتریس نامنفی؛ یادگیری نیمه نظارت؛ مطابق برچسب ؛ شناسایی فعالیت های نگهداری؛ چالش داده های PHM
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Health prognostic is playing an increasingly essential role in product and system management, for which non-negative matrix factorization (NMF) has been an effective method to model the high dimensional recorded data of the device or system. However, the existing unsupervised and supervised NMF models fail to learn from both labeled and unlabeled data together. Therefore, we propose a label consistent semi-supervised non-negative matrix factorization (LCSSNMF) framework that can simultaneously factorize both labeled and unlabeled data, where the discriminability of label data is preserved. Specifically, it firstly incorporates a class-wise coefficient distance regularization term that makes the coefficients for similar samples or samples with the same label close. Moreover, a label reconstruction regularization term is also presented, as the classification error with coefficient matrix of labeled data is expected as low as possible, which will potentially improve the classification accuracy in maintenance activities identification for industrial remote monitoring and diagnostics. The experiment results on real maintenance activities identification application from PHM 2013 data challenge competition demonstrate that LCSSNMF outperforms the state-of-arts NMF methods and results provided by the competition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 52, June 2016, Pages 161–167
نویسندگان
, , , ,