کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380206 1437426 2016 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Erasable itemset mining over incremental databases with weight conditions
ترجمه فارسی عنوان
معدن سنگ آهک خردایش بر روی پایگاه داده های افزایشی با شرایط وزن
کلمات کلیدی
آیتم های پاک کننده پایگاه داده افزایشی، محدودیت وزن، هرس هدف، داده کاوی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Erasable itemset mining is an approach for mining itemsets with low profits from large-scale product databases in order to solve financial crises of plants in manufacturing industries. Previous erasable itemset mining methods deal with static product databases only, and ignore any characteristics such as items’ own values when they extract the erasable itemsets. Therefore, such approaches may fail to solve financial crises of plants because they have to iterate a significant number of mining processes in order to deal with real-time product data accumulated from plants in the real world. In this paper, we propose a new tree-based erasable itemset mining algorithm for dynamic databases, which finds erasable itemsets considering the weight conditions from incremental databases. The proposed algorithm uses new tree and list data structures for performing its mining operations more efficiently. Furthermore, the proposed algorithm is capable of reducing the number of mined erasable itemsets by considering the different weight information of items within product databases. We also compare the proposed approach with other tree-based state-of-the-art methods. By performing runtime, memory, pattern quality, and scalability comparisons with respect to various real and synthetic incremental datasets, we show that the proposed algorithm is outstanding in comparison to other previous methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 52, June 2016, Pages 213–234
نویسندگان
, , , ,