کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380370 1437434 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new framework for mining frequent interaction patterns from meeting databases
ترجمه فارسی عنوان
یک چارچوب جدید برای الگوهای تعامل ماین های معدن از پایگاه های اطلاعاتی ملاقات
کلمات کلیدی
داده کاوی، الگوهای مکرر، نمودارهای تصادفی هدایت شده، تعامل انسان، جلسات مدل سازی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We proposed a DAG-based mining framework to model and mine interactions in meetings.
• The framework integrates DAG, interaction pattern & weighted frequent pattern mining
• It captures temporal and triggering relations among meeting interactions.
• It incorporates node weight to preserve rank information of meeting participants.
• It exploits anti-monotone property and is practical in many real-life scenarios.

Meetings play an important role in workplace dynamics in modern life since their atomic components represent the interactions among human beings. Semantic knowledge can be acquired by discovering interaction patterns from these meetings. A recent method represents meeting interactions using tree data structure and mines interaction patterns from it. However, such a tree based method may not be able to capture all kinds of triggering relations among interactions and distinguish same interaction from different participants of different ranks. Hence, it is not suitable to find all interaction patterns such as those about correlated interactions. In this paper, we propose a new framework for mining interaction patterns from meetings using an alternative data structure, namely, weighted interaction flow directed acyclic graph (WIFDAG). Specifically, a WIFDAG captures both temporal and triggering relations among interactions in meetings. Additionally, to distinguish participants from different ranks, we assign weights to nodes in the WIFDAGs. Moreover, we also propose an algorithm called WDAGMeet for mining weighted frequent interaction patterns from meetings represented by the proposed framework. Extensive experimental results are shown to signify the effectiveness of the proposed framework and the mining algorithm built on that framework for mining frequent interaction patterns from meetings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 45, October 2015, Pages 103–118
نویسندگان
, , , , , ,