کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380415 1437440 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Novel informative feature samples extraction model using cell nuclear pore optimization
ترجمه فارسی عنوان
مدل استخراج نمونه های نوآورانه با استفاده از بهینه سازی هسته سلولی
کلمات کلیدی
نمونه برداری از ویژگی های قابل توجه استخراج، بهینه سازی هسته هسته سلولی، شناسایی پارامتر مستمر، طراحی توربین هیدرولیک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

A novel informative feature samples extraction model is proposed to approximate massive original samples (OSs) by using a small number of informative feature samples (IFSs). In this model, (1) the feature samples (FSs) are identified using Support Vector Regression and Quantum-behaved Particle Swarm Optimization and (2) the IFSs space is established based on the Cell Nuclear Pore Optimization (CNPO) algorithm. CNPO uses a pore vector containing 0 or 1 to extract the essential FSs with high contribution based on the thought of cell nuclear pore selection mechanism. This model can be used to identify the continuous parameter based on the IFSs without massive OSs and time-consuming work.Two experiments are used to validate the proposed model, and one case is used to illustrate the practical value in the real engineer field. The experiments show that the IFSs could approximately represent the massive OSs, and the case shows that the model is helpful to identify the continuous parameters for the hydraulic turbine type design.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 39, March 2015, Pages 168–180
نویسندگان
, , ,