کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380498 1437442 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Contrastive divergence for memristor-based restricted Boltzmann machine
ترجمه فارسی عنوان
واگرایی کنتراست برای دستگاه بولتزمن محدود شده توسط مریستر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Restricted Boltzmann machines and deep belief networks have been shown to perform effectively in many applications such as supervised and unsupervised learning, dimensionality reduction and feature learning. Implementing networks, which use contrastive divergence as the learning algorithm on neuromorphic hardware, can be beneficial for real-time hardware interfacing, power efficient hardware and scalability. Neuromorphic hardware which uses memristors as synapses is one of the most promising areas to achieve the above-mentioned goals. This paper presents a restricted Boltzmann machine which uses a two memristor model to emulate synaptic weights and achieves learning using contrastive divergence.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 37, January 2015, Pages 336–342
نویسندگان
, , , ,