کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380500 1437442 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Date fruits classification using texture descriptors and shape-size features
ترجمه فارسی عنوان
طبقه بندی میوه های تاریخ با استفاده از توصیفگرهای بافت و ویژگی های شکل
کلمات کلیدی
طبقه بندی تاریخ الگوی دودویی محلی، توصیفگر محلی وبر ماشین بردار پشتیبانی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, we proposed a system of automatically classifying different types of dates from their images. Different dates have various distinguished features that can be useful to recognize a particular date. These features include color, texture, and shape. In the proposed system, a color image of a date is decomposed into its color components. Then, local texture descriptor in the form of local binary pattern (LBP) or Weber local descriptor (WLD) histogram is applied to each of the components to encode the texture pattern of the date. The texture patterns from all the components are fused to describe the image. Fisher discrimination ratio (FDR) based feature selection is utilized to reduce the dimensionality of the feature set. Size and shape features are appended to the texture descriptors to fully describe the date. As a classifier, we use support vector machines. The proposed system achieves more than 98% accuracy to classify the dates.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 37, January 2015, Pages 361–367
نویسندگان
,