کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380716 1437456 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
GMDH-based networks for intelligent intrusion detection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
GMDH-based networks for intelligent intrusion detection
چکیده انگلیسی
Network intrusion detection has been an area of rapid advancement in recent times. Similar advances in the field of intelligent computing have led to the introduction of several classification techniques for accurately identifying and differentiating network traffic into normal and anomalous. Group Method for Data Handling (GMDH) is one such supervised inductive learning approach for the synthesis of neural network models. Through this paper, we propose a GMDH-based technique for classifying network traffic into normal and anomalous. Two variants of the technique, namely, Monolithic and Ensemble-based, were tested on the KDD-99 dataset. The dataset was preprocessed and all features were ranked based on three feature ranking techniques, namely, Information Gain, Gain Ratio, and GMDH by itself. The results obtained proved that the proposed intrusion detection scheme yields high attack detection rates, nearly 98%, when compared with other intelligent classification techniques for network intrusion detection.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 26, Issue 7, August 2013, Pages 1731-1740
نویسندگان
, , ,