کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
381082 1437461 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive non-parametric identification of dense areas using cell phone records for urban analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Adaptive non-parametric identification of dense areas using cell phone records for urban analysis
چکیده انگلیسی

Pervasive large-scale infrastructures (like GPS, WLAN networks or cell-phone networks) generate large datasets containing human behavior information. One of the applications that can benefit from this data is the study of urban environments. In this context, one of the main problems is the detection of dense areas, i.e., areas with a high density of individuals within a specific geographical region and time period. Nevertheless, the techniques used so far face an important limitation: the definition of dense area is not adaptive and as a result the areas identified are related to a threshold applied over the density of individuals, which usually implies that dense areas are mainly identified in downtowns. In this paper, we propose a novel technique, called AdaptiveDAD, to detect dense areas that adaptively define the concept of density using the infrastructure provided by a cell phone network. We evaluate and validate our approach with a real dataset containing the Call Detail Records (CDR) of fifteen million individuals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 26, Issue 1, January 2013, Pages 551–563
نویسندگان
, , ,