کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
381248 1437493 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive growing-and-pruning neural network control for a linear piezoelectric ceramic motor
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Adaptive growing-and-pruning neural network control for a linear piezoelectric ceramic motor
چکیده انگلیسی

In this paper, an adaptive growing-and-pruning neural network control (AGPNNC) system is developed for a linear piezoelectric ceramic motor. The AGPNNC system is composed of a neural controller and a robust controller. The neural controller uses a self-constructing neural network (SCNN) to mimic an ideal computation controller, and the robust controller is designed to achieve L2 tracking performance with desired attenuation level. If the approximation performance of the SCNN is inadequate, the SCNN can create new hidden neurons to increase learning ability. If the hidden neuron of the SCNN is insignificant, it should be removed to reduce computation loading; otherwise, if the hidden neuron of the SCNN is significant, it should be retained. Moreover, the adaptive laws of controller parameters are derived in the sense of Lyapunov function and Barbalat's lemma; so the system stability can be guaranteed. Finally, experimental results show that a perfect tracking response can be achieved using the self-constructing network mechanism and the on-line parameter-learning algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 21, Issue 8, December 2008, Pages 1153–1163
نویسندگان
,