کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
381287 | 1437478 | 2010 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Selection of relevant variables for industrial process modeling by combining experimental data sensitivity and human knowledge
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Selection of relevant variables from a high dimensional process operation setting space is a problem frequently encountered in industrial process modeling. This paper presents two global relevancy criteria, which permit to formalize and combine the sensitivity of experimental data and the conformity of human knowledge using a liner and a fuzzy model, respectively. The performances of these relevancy criteria and some well-known selection methods are compared through artificial and real datasets. The result validates the outperformance of fuzzy global relevancy criterion, especially when the number of learning data is small and noisy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 23, Issue 8, December 2010, Pages 1368–1379
Journal: Engineering Applications of Artificial Intelligence - Volume 23, Issue 8, December 2010, Pages 1368–1379
نویسندگان
Xiaoguang Deng, Xianyi Zeng, Philippe Vroman, Ludovic Koehl,