کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
381328 | 1437472 | 2011 | 15 صفحه PDF | دانلود رایگان |

Online set-point optimisation which cooperates with model predictive control (MPC) and its application to a yeast fermentation process are described. A computationally efficient multilayer control system structure with adaptive steady-state target optimisation (ASSTO) and a suboptimal MPC algorithm are presented in which two neural models of the process are used. For set-point optimisation, a steady-state neural model is linearised online and the set-point is calculated from a linear programming problem. For MPC, a dynamic neural model is linearised online and the control policy is calculated from a quadratic programming problem. In consequence of linearisation of neural models, the necessity of online nonlinear optimisation is eliminated. Results obtained in the proposed structure are comparable with those achieved in a computationally demanding structure with nonlinear optimisation used for set-point optimisation and MPC.
Journal: Engineering Applications of Artificial Intelligence - Volume 24, Issue 6, September 2011, Pages 968–982