کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
381490 1437501 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Genetic programming of conventional features to detect seizure precursors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Genetic programming of conventional features to detect seizure precursors
چکیده انگلیسی

This paper presents an application of genetic programming (GP) to optimally select and fuse conventional features (C-features) for the detection of epileptic waveforms within intracranial electroencephalogram (IEEG) recordings that precede seizures, known as seizure precursors. Evidence suggests that seizure precursors may localize regions important to seizure generation on the IEEG and epilepsy treatment. However, current methods to detect epileptic precursors lack a sound approach to automatically select and combine C-features that best distinguish epileptic events from background, relying on visual review predominantly. This work suggests GP as an optimal alternative to create a single feature after evaluating the performance of a binary detector that uses: (1) genetically programmed features; (2) features selected via GP; (3) forward sequentially selected features; and (4) visually selected features. Results demonstrate that a detector with a genetically programmed feature outperforms the other three approaches, achieving over 78.5% positive predictive value, 83.5% sensitivity, and 93% specificity at the 95% level of confidence.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 20, Issue 8, December 2007, Pages 1070–1085
نویسندگان
, , ,