کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
381590 | 1437511 | 2006 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Neural network-based failure rate prediction for De Havilland Dash-8 tires
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An artificial neural network (ANN) model for predicting the failure rate of De Havilland Dash-8 airplane tires utilizing the two-layered feed-forward back-propagation algorithm as a learning rule is developed. The inputs to the neural network are independent variables and the output is the failure rate of the tires. Six years of data are used for model building and validation. Model validation, which reflects the suitability of the model for future prediction is performed by comparing the predictions of the model with that of Weibull regression model. The results show that the failure rate predicted by the ANN is closer in agreement with the actual data than the failure rate predicted by the Weibull model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 19, Issue 6, September 2006, Pages 681–691
Journal: Engineering Applications of Artificial Intelligence - Volume 19, Issue 6, September 2006, Pages 681–691
نویسندگان
Ahmed Z. Al-Garni, Ahmad Jamal, Abid M. Ahmad, Abdullah M. Al-Garni, Mueyyet Tozan,