کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
381700 | 1437494 | 2008 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nonlinear system identification: From multiple-model networks to Gaussian processes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Neural networks have been widely used to model nonlinear systems for control. The curse of dimensionality and lack of transparency of such neural network models has forced a shift towards local model networks and recently towards the nonparametric Gaussian processes approach. Assuming common validity functions, all of these models have a similar structure. This paper examines the evolution from the radial basis function network to the local model network and finally to the Gaussian process model. A simulated example is used to explain the advantages and disadvantages of each structure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 21, Issue 7, October 2008, Pages 1035–1055
Journal: Engineering Applications of Artificial Intelligence - Volume 21, Issue 7, October 2008, Pages 1035–1055
نویسندگان
Gregor Gregorčič, Gordon Lightbody,