کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
381760 1437509 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A speed and accuracy test of backpropagation and RBF neural networks for small-signal models of active devices
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A speed and accuracy test of backpropagation and RBF neural networks for small-signal models of active devices
چکیده انگلیسی

Backpropagation networks are compared to radial basis function (RBF) networks when it comes to small signal modeling RF/microwave active devices. The modeled device is a 4×50 μm gate width, 0.25 μm gate length gallium arsenide (GaAs) Metal semiconductor field-effect transistor (MESFET). It is the authors’ intent to prove that RBF networks provide much better performance than backpropagation when it comes to this type of modeling. First, two separate backpropagation networks are created to determine the best training algorithm in terms of convergence speed. Then, the backpropagation network, using its best training algorithm, is compared to the RBF network in terms of speed and accuracy. Simulation results are presented in tables and figures for better understanding. All tests and simulations for the backpropagation and RBF networks are done using Matlab's Neural Network Toolbox.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 19, Issue 8, December 2006, Pages 883–890
نویسندگان
, , , ,