کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
381978 | 660712 | 2016 | 11 صفحه PDF | دانلود رایگان |
• We propose a new method for early detection of emerging topics in micro-blogging.
• We find two characteristics of emerging topic which influence topic diffusion.
• We build a new DBN-based model to represent the temporal evolution of keyword.
• Performance of our method leads one to two hours earlier than others.
Micro-blogging networks have become the most influential online social networks in recent years, more and more people are used to obtain and diffuse information in them. Detecting topics from a great number of tweets in micro-blogging is important for information propagation and business marketing, especially detecting emerging topics in the early period could strongly support these real-time intelligent systems, such as real-time recommendation, ad-targeting, marketing strategy. However, most of previous researches are useful to detect emerging topic on a large scale, but they are not so effective for the early detection due to less informative properties in a relatively small size. To solve this problem, we propose a new early detection method for emerging topics based on Dynamic Bayesian Networks in micro-blogging networks. We first analyze the topic diffusion process and find two main characteristics of emerging topic which are attractiveness and key-node. Then based on this finding, we select features from the topology properties of topic diffusion, and build a DBN-based model by the conditional dependencies between features to identify the emerging keywords. An emerging keyword not only occurs in a given time period with frequency properties, but also diffuses with specific topology properties. Finally, we cluster the emerging keywords into emerging topics by the co-occurrence relations between keywords. Based on the real data of Sina micro-blogging, the experimental results demonstrate that our method is effective and capable of detecting the emerging topics one to two hours earlier than the other methods.
Journal: Expert Systems with Applications - Volume 57, 15 September 2016, Pages 285–295