کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
381990 660717 2016 12 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Context-aware QoS prediction for web service recommendation and selection
ترجمه فارسی عنوان
پیش بینی QoS آگاه از محتوا برای توصیه و انتخاب خدمات وب
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Study the mapping relationship between the similarity and the geographical distance.
• Propose two novel context-aware QoS prediction models and an ensemble model.
• Our models can save much computation, and are suitable for the cold-start scenario.

QoS prediction is one of the key problems in Web service recommendation and selection. The context information is a dominant factor affecting QoS, but is ignored by most of existing works. In this paper, we employ the context information, from both the user side and service side, to achieve superior QoS prediction accuracy. We propose two novel prediction models, which are capable of using the context information of users and services respectively. In the user side, we use the geographical information as the user context, and identify similar neighbors for each user based on the similarity of their context. We study the mapping relationship between the similarity value and the geographical distance. In the service side, we use the affiliation information as the service context, including the company affiliation and country affiliation. In the two models, the prediction value is learned by the QoS records of a user (or a service) and the neighbors. Also, we propose an ensemble model to combine the results of the two models. We conduct comprehensive experiments in two real-world datasets, and the experimental results demonstrate the effectiveness of our models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 53, 1 July 2016, Pages 75–86
نویسندگان
, , , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت