کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
382156 660739 2016 9 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
New off-line Handwritten Signature Verification method based on Artificial Immune Recognition System
ترجمه فارسی عنوان
روش جدید تایید خودکار امضا دست نوشته بر اساس سیستم شناسایی ایمنی مصنوعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
سیستم تشخیص ایمنی مصنوعی؛ الگوهای باینری محلی Gradient؛ طولانی ترین ویژگی های اجرا تأیید امضا
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A new system for Handwritten Signature Verification is proposed.
• The Artificial Immune Recognition System is proposed to achieve the verification task.
• Two new features that are Gradient Local Binary Patterns and Longest Run Features are proposed.
• Results obtained on CEDAR and GPDS-100 corpuses reveal the effectiveness of the proposed methods.

Natural Immune System offers many interesting features that inspired the design of Artificial Immune Systems (AIS) used to solve various problems of engineering and artificial intelligence. AIS are particularly successful in fault detection and diagnosis applications where anomalies such as errors and failures are assimilated to viruses that should be detected. Thereby, AIS seem suitable to automatically detect forgeries in signature verification systems. This paper proposes a novel method for off-line signature verification that is based on the Artificial Immune Recognition System (AIRS). For feature generation, two different descriptors are proposed to generate signature traits. The first is the Gradient Local Binary Patterns that estimates gradient features based on the LBP neighborhood. The second descriptor is the Longest Run Feature, which describes the signature topology by considering longest suites of text pixels. Performance evaluation is carried out on CEDAR and GPDS-100 datasets. The results obtained showed that the proposed system has promising performance and often comfortably outperforms the state of the art.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 51, 1 June 2016, Pages 186–194
نویسندگان
, , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت