کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
382166 660742 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Breast cancer diagnosis using Genetically Optimized Neural Network model
ترجمه فارسی عنوان
تشخیص سرطان پستان با استفاده از مدل شبکه عصبی بهینه سازی شده به صورت ژنتیکی
کلمات کلیدی
بهینه سازی ژنتیکی شبکه عصبی، شبکه های عصبی مصنوعی، برنامه ریزی ژنتیک، اپراتور متقاطع متقاطع
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A Genetically Optimized Neural Network is proposed for Breast Cancer diagnosis.
• Mapping of GONN to its equivalent Feed Forward Neural Network are shown.
• GONN produces the highest classification accuracy among other classifiers.

One in every eight women is susceptible to breast cancer, at some point of time in her life. Early detection and effective treatment is the only rescue to reduce breast cancer mortality. Accurate classification of a breast cancer tumor is an important task in medical diagnosis. Machine learning techniques are gaining importance in medical diagnosis because of their classification capability. In this paper, we propose a new, Genetically Optimized Neural Network (GONN) algorithm, for solving classification problems. We evolve a neural network genetically to optimize its architecture (structure and weight) for classification. We introduce new crossover and mutation operators which differ from standard crossover and mutation operators to reduce the destructive nature of these operators. We use the GONN algorithm to classify breast cancer tumors as benign or malignant. To demonstrate our results, we had taken the WBCD database from UCI Machine Learning repository and compared the classification accuracy, sensitivity, specificity, confusion matrix, ROC curves and AUC under ROC curves of GONN with classical model and classical back propagation model. Our algorithm gives classification accuracy of 98.24%, 99.63% and 100% for 50–50, 60–40, 70–30 training–testing partition respectively and 100% for 10 fold cross validation. The results show that our approach works well with the breast cancer database and can be a good alternative to the well-known machine learning methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 42, Issue 10, 15 June 2015, Pages 4611–4620
نویسندگان
, ,