کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
382271 660754 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Graph-based semi-supervised learning with Local Binary Patterns for holistic object categorization
ترجمه فارسی عنوان
یادگیری نیمه نظارت مبتنی بر گراف با الگوهای باینری محلی برای طبقه بندی جامع شیء
کلمات کلیدی
یادگیری نیمه نظارت مبتنی بر گراف، انتشار برچسب بر اساس نمودار، الگوهای باینری محلی، طبقه بندی جامع، صحنه های در فضای باز، صحنه های داخل سالن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We propose a graph construction scheme that is based on data self-representation.
• The approach adaptively provides graphs without parameter tuning.
• The proposed scheme uses locality-constrained and sparsity encouraged coding.
• Semi-supervised learning experiments were conducted on indoor and outdoor scenes.
• The proposed method can outperform competing methods.

In this paper, we develop a new efficient graph construction algorithm that is useful for many learning tasks. Unlike the main stream for graph construction, our proposed data self-representativeness approach simultaneously estimates the graph structure and its edge weights through sample coding. Compared with the recent ℓ1ℓ1 graph based on sparse coding, our proposed objective function has an analytical solution (based on self-representativeness of data) and thus is more efficient. This paper has two main contributions. Firstly, we introduce a principled Two Phase Weighted Regularized Least Square graph construction method. Secondly, the obtained data graph is used, in a semi-supervised context, in order to categorize detected objects in outdoor and indoor scenes using Local Binary Patterns as image descriptors. In many previous works, LBP descriptors (histograms) were used as feature vectors for object detection and recognition. However, our work exploits them in order to construct adaptive graphs using a self-representativeness coding. The experiments show that the proposed method can outperform competing methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 41, Issue 17, 1 December 2014, Pages 7744–7753
نویسندگان
, , , ,